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The Bayesian versus

the Frequentist Approach
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Data and Parameter(s) in Statistics

In statistics a data set is becoming available via a random
mechanism.

A distribution f (X |θ) is used to describe the data generation
procedure.

For a given setup, the distribution is either:

given by sampling design, e.g. a Binomial experiment with known
number of trials, where X |θ ∼ Bin(n, θ), or

we need to elicit it from the data, i.e. collect the data {x1, . . . , xn} and
derive the distribution, e.g. X | (θ1, θ2) ∼ N (θ1, θ2).

Goodness of fit tests and plots should be used to examine how well an
assumed theoretical distribution fits the observed data.
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Distribution: random number generation engine
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Treating the unknown parameter θ

There are two (mainstream) schools of thought in statistics regarding the
way we deal with the unknown parameter θ:

(1) Frequentist (Neyman - Pearson - Wald)

(2) Bayesian (Bayes)

Both schools share the idea of the likelihood function, f (x|θ), that is
the joint distribution of the data x = {x1, . . . , xn}, where the
likelihood is considered to capture all the information about θ, that is
available in the observed data x = {x1, . . . , xn} (i.e., the likelihood
links the observed data with the unknown parameter via the
distribution function)

The two schools differ drastically on the way they handle the
unknown parameter θ.
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Frequentist School

Within this school we adopt the frequency based interpretation of
probability.

Frequentist probability of an event is defined as the limit of its
relative frequency in a large number of trials.

Example:
In the case of a fair coin toss (la pièce lancée en l’air), the frequentist
probability P(H) is 1/2, not because there are two equally likely
outcomes (classical interpretation of probability) but because in
repeated trials the empirical frequency converges to the limit 1/2 as
the number of trials goes to infinity, i.e.

P(H) =
# of heads

# of trials
=

nH
n

n→∞−→ 1

2
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Frequentist School: probability interpretation
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0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

The proportion of Heads in 1000 tosses of a fair coin

Tosses

Fr
eq

ue
nt

is
t P

(H
)

P. Tsiamyrtzis (Polimi & AUEB) Bayesian SPC/M CNBH - Paris 2024 16 / 61



Frequentist School: probability interpretation

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

The proportion of Heads in 10000 tosses of a fair coin

Tosses

Fr
eq

ue
nt

is
t P

(H
)

P. Tsiamyrtzis (Polimi & AUEB) Bayesian SPC/M CNBH - Paris 2024 17 / 61



Data and Parameter(s) in Statistics

The distribution that we chose for our data, comes along with a
(univariate or multivariate) set of parameters that fully describe the
random mechanism which produces the data. For example:

X |θ ∼ Bin(n, θ)

X | (θ1, θ2) ∼ N (θ1, θ2)

Usually we are interested in drawing either:

inference for the unknown parameter(s) θ , i.e., derive point/interval
estimates, hypothesis testing and/or

predictions for future observable(s).
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Frequentist School

The frequentist approach attempts to be ‘‘objective” in setting the
probabilities. However, it relies heavily on the assumption that we are
capable to repeat an experiment, infinite number of times, under
“identical” conditions. The latter is restrictive in several real life
applications making it really difficult to provide a frequentist based
evaluation. Here are some examples:

Example 1:
What is the probability that France will win the next World Cup in
Rugby?

Example 2:
What is the probability that tomorrow noon will rain at Paris?

The lack or repeatability in the previous examples lead to the
embarrassing answer that this probability can either be 0 (if the event
will not occur) or 1 (if it occurs).
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Frequentist School

Example 3:
What is the probability that the first lot of the raw material arriving
tomorrow at the lab will be of acceptable quality?

From a frequentist perspective, once we will examine the lot, the
above probability is either 0 or 1. However, we tend to think that
there exists an infinite population of cases exactly like the one above,
from which we can randomly sample.

In all the above examples we have a Bernoulli distribution, B(θ), where θ is
the probability of success, and we observe only one data point x , and so:

x = 0 ⇒ θ̂ = 0 or

x = 1 ⇒ θ̂ = 1
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Frequentist School

Based on the frequentist’s approach and moving to inference, the
parameter θ in the likelihood is considered to be a fixed unknown
constant.

Thus inference regarding θ becomes available thanks to long term
frequency properties. Precisely, we consider infinite repeated
sampling, for fixed value of θ.

While point estimation seems to be well aligned in this school, the
assumption of a fixed parameter value can cause great difficulty in
the interpretation of interval estimates (confidence intervals) and/or
hypotheses testing.
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Bayesian School: Subjective probability

Within this school we have the subjective Bayesian interpretation of
probabilities.

Subjective probability:

A probability derived from an individual’s personal belief, regarding the
occurrence of a specific event. Subjective probabilities contain no formal
calculations and reflect strictly the subject’s personal information.

Example:
In the case of tossing a coin, the subjective probability P(H) = 0.4
and P(T ) = 0.6 can express one’s personal opinion for a specific coin.
A different person can come with a different pair of values based on
his/her personal information.
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Bayesian School: Coherence

In contrast to the frequentist “objective” conjecture in the Bayesian
school the probabilities are set subjectively, depending on what bet
a person is willing to take regarding the occurrence of the specific
outcome.

The assignment of the Bayesian probabilities needs to be done in a
coherent way (De Finetti).

Coherence:

A system of bets (probabilities) is coherent when it does not allow a
participant to be a sure looser, independently of the outcome of the
experiment (i.e. we do not allow a Dutch book).

Conformity to the probability calculus is necessary and sufficient for
coherence.
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Conformity to the probability calculus is necessary and sufficient for
coherence.
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Bayesian School

According to the Bayesian interpretation we can now easily provide
(subjective) probabilities for the non-repeatable event examples (that
the frequentist’s probability failed):

Example 1:
What is the probability that France will win the next World Cup in
Rugby?

Example 2:
What is the probability that tomorrow noon will rain at Paris?

Example 3:
What is the probability that the first lot of the raw material arriving
tomorrow in the lab will be of acceptable quality?
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Bayesian School

The data x become available via the random mechanism f (x|θ),
where θ is an unknown constant.

When something is unknown to you, i.e. θ, a reasonable thing to do
is to use probability theory to quantify your uncertainty.

So in the Bayesian school the parameter θ is considered to be a
random variable.

Its distribution, will quantify our (subjective) opinion regarding θ
(before looking the data) with a prior distribution: π(θ).

Then Bayes theorem will do the magic updating the prior distribution
to posterior, in the light of the data.
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Bayes theorem

The Bayes theorem for distributions is given by:

p(θ|x) = f (x|θ)π(θ)∫
f (x|θ)π(θ)dθ

where:

x = {x1, . . . , xn} are the observed data.

f (x|θ) refers to the likelihood of the data

π(θ) is the prior distribution of the parameter θ,

p(θ|x) is the posterior distribution of the parameter θ, given the
observed data x = {x1, . . . , xn}.

So the Bayes theorem is nothing more that an updating mechanism,
where the prior is updated to posterior in the light of evidence coming
from the available data.
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Bayesian School

The Bayesian approach consists of the following steps:

(a) Define the likelihood: f (x|θ).

(b) Define the prior distribution: π(θ).

(c) Compute the posterior distribution: p(θ|x).

(d) Decision Making: Draw inference regarding θ (point/interval
estimates and hypothesis testing).

(e) Derive the predictive distribution f (xn+1|x1, x2, . . . , xn) of a future
observable and make predictions.
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Prior Distribution

This is the key element of the Bayesian approach.

Subjective Bayesian approach:
The parameter of interest takes eventually a single number, which is
used in the likelihood to provide the data. Since we do not know this
value, we use a random mechanism (the prior π(θ)) to describe the
uncertainty about this parameter value. Thus, we simply use
probability theory to model the uncertainty.

The prior should reflect our personal (subjective) opinion
(information) regarding the parameter, before we look at the data.
The only thing we need to be careful about, is to be coherent, which
will happen if we will obey the probability laws.
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Prior Distribution

Main issues regarding prior distributions:

Posterior lives in the range defined by the prior.

The more data we get the less the effect of the prior in determining
the posterior distribution (unless extreme choices, like point mass
priors are made).

Different priors applied on the same data will lead to different
posteriors.

The last bullet, raised (and keeps raising) the major criticism from
non-Bayesians (see for example Efron (1986), “Why isn’t everyone a
Bayesian”). However, Bayesians love the opportunity to be subjective.
Lets see an example:
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Prior Distribution: example

We have two different binomial experiments.

Setup 1: We ask from a sommelier (wine expert) to taste 10 glasses
of wine and decide whether each glass is Merlot or Pinot Noir.

Setup 2: We ask from a drank man to guess the sequence of H and
T in 10 tosses of a fair coin.

In both cases we have a Binomial B(10, θ), with unknown the
probability of success (θ).

The data become available and let’s assume that we have 10
successes in both setups (i.e. 10 successes in 10 trials).

Please write down your best guess the value of (θ) in each setup.

Based on the frequentist approach the Maximum Likelihood Estimate
of the unknown parameter is θ̂ = x = 1 in both cases.
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Prior Distribution: example

But is this really what we believe?

Before looking in the data, if you were to bet money in which setup
has higher success probability θ, would you put your money to setup 1
or 2? or did you think that the probabilities of success were equal in
both setups?

For the sommelier we expect to have the probability of success close
to 1, while for the drunk man we would expect his success rate to be
close to 1/2.

Adopting the appropriate prior distribution for each setup would lead
to different posteriors, in contrast to the frequentist based methods
that will force to have identical results.

If the two probability numbers that you wrote down about θ in the
previous setups were not the same number, then you are thinking and
acting as Bayesian (even though you might not know about it!).
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Computing the posterior: example

Assume that we have a random sample of size n: x = (x1, x2, . . . , xn)
from the Normal (Gaussian) distribution, i.e.:

Xi |θ ∼ N
(
θ, σ2

)
with σ2 being known.

If the prior distribution of the unknown parameter θ is Normal, i.e. :

π(θ) ∼ N
(
µ, τ2

)
with µ and τ2 being known.

Then the posterior distribution of θ|x will be given by:

θ|x ∼ N

(
τ2x + σ2

n µ
σ2

n + τ2
,

σ2

n τ2

σ2

n + τ2

)
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Sensitivity Analysis

We will use the posterior distribution of θ|x derived in the last example:

θ|x ∼ N

(
τ2x + σ2

n µ
σ2

n + τ2
,

σ2

n τ2

σ2

n + τ2

)

Let’s look on some graphical illustrations regarding the effect of the
sample size n and the variance of the prior distribution, τ2. Specifically,
let’s assume that x = 4 and:

n = 1, 10, 100 with π(θ) ∼ N(0, 1)

n = 1 with π(θ) ∼ N
(
0, 102

)
n = 1, 10, 100 with π(θ) ∼ N

(
0, 0.12

)
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Sensitivity Analysis

Plot of the N(0, 1) prior distribution:
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0
1

2
3

4
Normal prior

θ

Prior: N(0,1)
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Sensitivity Analysis

Plot of p(θ|x), when n = 1 with π(θ) ∼ N(0, 1):
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Sensitivity Analysis
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Sensitivity Analysis

Plot of the N
(
0, 102

)
prior distribution:
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Sensitivity Analysis

Plot of p(θ|x), when n = 1 with π(θ) ∼ N
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Sensitivity Analysis

Plot of the N
(
0, 0.12

)
prior distribution:
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Sensitivity Analysis

Plot of p(θ|x), when n = 1 with π(θ) ∼ N
(
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Sensitivity Analysis

Plot of p(θ|x), when n = 1, 10 with π(θ) ∼ N
(
0, 0.12

)
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Prior: N(0,0.01)
Posterior for n=1
Posterior for n=10
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Sensitivity Analysis

Plot of p(θ|x), when n = 1, 10, 100 with π(θ) ∼ N
(
0, 0.12

)
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Prior: N(0,0.01)
Posterior for n=1
Posterior for n=10
Posterior for n=100
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The Bayesian approach rocks!

Thomas Bayes
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Bayesian Statistical

Process Control & Monitoring

(Quality Control)
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Why Bayesian SPC/M?

Within the Bayesian approach the unknown parameter(s) θ can be
integrated out, deriving the predictive distribution.

Use of Bayes theorem, updates the (power) prior π(θ) to posterior
p(θ|X ) and then for future observable(s) Y = Xn+1 we get:

f (Y |X ) =

∫
f (Y |θ) p(θ|X ) dθ

Based on the predictive distribution we will derive two monitoring
schemes:

PCC: Predictive Control Charts, for detecting transient shifts of large
magnitude (outliers).

PRC: Predictive Residual Cusum: for detection of persistent shifts of
medium/small size (extended to Predictive Ratio Cusum for any
distribution in the exponential family).
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PCC formulation

The Predictive Control Chart (PCC) construction will be based on
the predictive distribution and it can start as soon as n = 2 and is
based on the sequentially updated form of the predictive distribution.

Precisely, we will determine an IC region, Rn+1, where the future
observable (Xn+1) will most likely be, as long as the process is stable
(i.e. no changes occurred).

The limits of the predictive IC region, Rn+1, will be established based
on either the overall False Alarm Probability (FAP) or the Average
Run Length (ARL).

Remember that thanks to the (sequentially updated) Bayesian
approach, at each time point we test if the process is IC or OOC (i.e.
we control the process), but we can also draw inference (i.e. monitor
the process), having a Bayes optimal point estimate of the unknown
parameter(s).
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PCC Illustration and Decision Making
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PCC Illustration and Decision Making
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PCC Real Data Application (Medical Lab)

We will use data that come from the daily Internal Quality Control
(IQC) routine of a medical laboratory, monitoring “activated Partial
Thromboplastin Time” (aPTT), measured in seconds.

We gathered 30 daily normal IQC observations (Xi ) from a medical
lab. Notice that these data are based on control samples and in
regular practice will become available sequentially.

The goal is to accurately detect any transient parameter shift of large
size, as this will have an impact on the reported patient results. Thus,
it is of major importance to perform on-line monitoring of the process
without a phase I exercise.

We elicit the prior π0
(
θ1, θ2

2|τ
)
∼ NIG

(
29.6, 1/7, 2, 0.562

)
and we

had n0 = 30 historical data (from a different reagent).
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PCC Real Data Application (Medical Lab)
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PRC formulation

In PRC we will guard against informative OOC scenarios, focusing on
detecting persistent parameter shifts of either parameter of the
Normal distribution. Precisely, we developed:

loc-PRC: Location PRC that aims to identify either upward or
downward persistent mean shifts of moderate/small size.

sc-PRC: Scale PRC that aims to identify persistent variance increase
of moderate/small size.

Again, thanks to the (sequentially updated) Bayesian approach, at
each time point we test if the process is IC or OOC (i.e. we control
the process), but we can also draw inference (i.e. monitor the
process), having a Bayes optimal point estimate of the unknown
mean and variance parameters.
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PRC Real Data Application (Medical Lab)

We will use hemostasis data that come from the daily Internal Quality
Control (IQC) routine of a medical laboratory.

We are interested in the variable “Factor V”, measured in %
regarding the international standards in clinical hemostasis, whose
deficiencies can induce bleeding disorders of varying severity.

A change of reagent batch in a lab can introduce a step change to
the measurement of Factor V. It is crucial to identify such a change
point, especially at the start of the process to avoid impacting
clinically the patients care.

We sequentially gathered 21 normally distributed IQC observations
(Xi ) from the control samples of a medical lab, where
Xi |
(
θ1, θ2

2
)
∼ N

(
θ1, θ2

2
)
. We choose the parameter k = ±1 and we

tune the PRC in detecting mean step changes, in either upward or
downward direction, of one standard deviation size (i.e., ±θ̂2).
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loc-PRC Real Data Application (Medical Lab)

We elicit the initial prior π0
(
θ1, θ2

2|τ
)
∼ NIG (31.8, 1/2, 2, 4.41).

Furthermore, we have n0 = 37 IC historical data with ȳ = 31.73 and
var(y) = 3.31. We set α0 = 1/37 to convey the weight of a single
data point to these.

Combining the two sources of information we obtain:
π
(
θ1, θ2

2|Y , α0, τ
)
∼ NIG (31.75, 3/2, 5/2, 6.02).

We derive the PRC’s decision limits h+ and h− to achieve
FWER = 5% for 21 observations in a two-sided loc-PRC.
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loc-PRC Real Data Application (Medical Lab)
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loc-PRC Real Data Application (Medical Lab)
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Conclusions

In Bayesian SPC/M we introduced the Predictive Control Chart (PCC)
and the Predictive Residual (Ratio) Cusum (PRC) mechanisms which:

they are provided in a general form allowing their use for any discrete
or continuous data from the regular exponential family.

Any prior information and/or historical data can be incorporated,
boosting performance, but objective priors are also available.

At any stage of the process, apart from outlier & change point
detection, posterior inference for the unknown parameter(s) is also
available.

Both PCC and PRC outperforms frequentist and Bayesian
alternatives and their are found to be robust to various
misspecifications.
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