

Interprétation des gazométries sanguines

Evitons l'eau dans le gaz!!

Dr Rémi BALLUET - Assistant spécialiste Pharmacologie-Toxicologie-Gaz du sang, CHU Saint-Etienne

Dr Patricia CORREIA - CCA, Médecine Intensive et Réanimation, CHU Saint-Etienne

Atelier B3, modératrice : E. Roman

Question auditoire

- Qui êtes vous ?
 - Biologiste dans le privé
 - Biologiste dans le public
 - Interne
 - Médecin autre que biologiste
 - Autres

Question auditoire

- Comment validez vous les gazométries ?
 - Je ne valide pas de gazométrie
 - Je ne valide que de la biologie délocalisée
 - J'ai un ou plusieurs appareils à gaz du sang dans mon laboratoire
 - Je dispose de commentaires d'interprétation biologique
 - Je dispose de commentaires sur les conditions pré-analytiques
 - Je valide une série de 10 résultats en moins de 2 minutes (12 secondes par résultats)
 - Je valide une série de 10 résultats en plus de 2 minutes

Plan de la présentation

- 1) Aspects réglementaires
- 2) Indications
- 3) Pré-analytique
- 4) Physiologie
- 5) Cas cliniques
- 6) Tableau récapitulatif

Aspects réglementaires

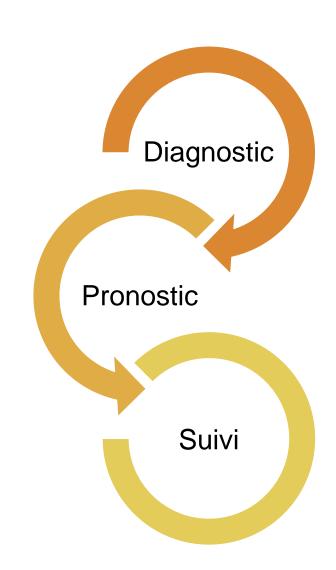
- Décret n°2006-557 article 1
 - Pour les structures d'urgence
 - Accès en permanence
 - Sans délai
 - Pour la chirurgie cardiaque
 - Accès compatible avec l'urgence vitale
- Recommandations SFBC sur la biologie d'urgence 2016
 - Les GDS obligatoires LBM acceptant les urgences
 - HbCO et metHb : urgence absolue (<1h)
 - Réanimations résultat 10 minutes max

Indications

Exploration

 Coma, état de choc, syndrome confusionnel, malaise, sepsis, traumatismes

Métabolique


 Troubles A/B, diabète, pancréatite, pertes digestives, insuffisance rénale aigue, IHC

Respiratoire

 DRA, BPCO, IRA, embolie pulmonaire, pneumothorax, crise d'angoisse, asthme

Autres

 Cardiologie, sang de cordon, intoxications, chirurgies

Prélèvements

Conditions

- Phase la plus importante +++
- Prélèvement
 - Test d'Allen préalable

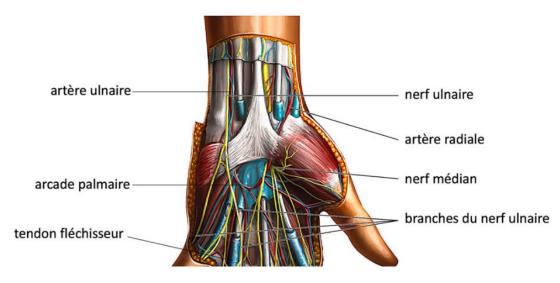
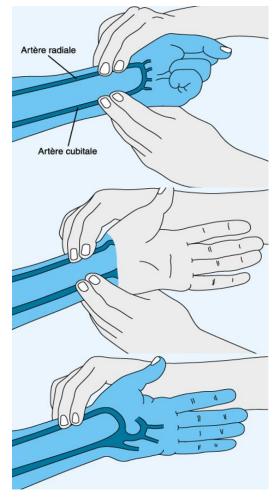
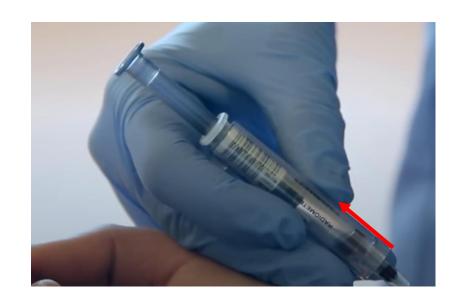



Image issue du centre de chirurgie du membre supérieur Trenel


Test d'Allen

Prélèvements

Dispositifs

- Seringue en polyéthylène ou polypropylène
 - Conservation courte
 - Héparinée (buvard/solide/liquide)
 - Bouchon imperméable après purge
- Artériel
 - Évent
 - Montée par la pression artérielle
- Sur cathéter
 - Purge suffisante
 - Piston
- Capillaires héparinés

Pré-analytique

Purge

Equilibre avec air bulle

Agitation

- Evite les caillots
- +++ si héparine sur buvard

Remplissage

Rapport de dilution de l'héparine

Délai

- Plastique perméable aux gaz
- Métabolisme

Pas de glace

- Augmente la perméabilité
- Correct si lactates/glucose seuls

Ré-homogénéisation

Billes/Manuelle

Physiologie

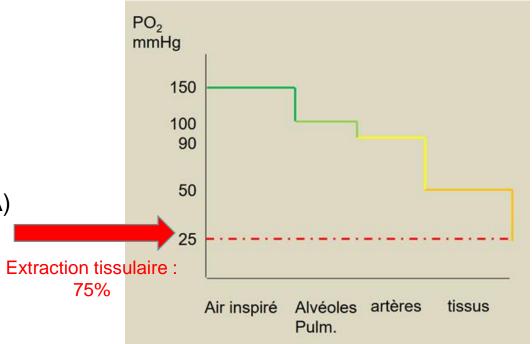
- Air atmosphérique
 - 21% d'O2 ← → 160 mmHg (21% de 760 mmHg = PA)
 - 0,03% de CO2 ←→ 0,2 mmHg
- Air alvéolaire
 - 11-14% d'O2 ← → 80-100 mmHg
 - 5,6% de CO2 ← → 39 mmHg
- Oxygène au masque
 - 1L d'O2 ← → 4% de FiO2 en + pour les 3 premiers L
 - Puis 3% par L d'O2
- Respirateurs
 - 1% de plus ←→7,6 mmHg de plus

Physiologie

Air atmosphérique

- 21% d'O2 ← → 160 mmHg (21% de 760 mmHg = PA)
- 0,03% de CO2 ←→ 0,2 mmHg

Air alvéolaire


- 11-14% d'O2 ← → 80-100 mmHg
- 5,6% de CO2 ← → 39 mmHg

Oxygène au masque

- 1L d'O2 ← → 4% de FiO2 en + pour les 3 premiers L
- Puis 3% par L d'O2

Respirateurs

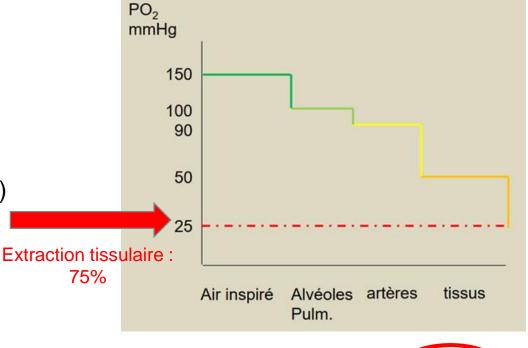
■ 1% de plus \leftarrow >7,6 mmHg de plus

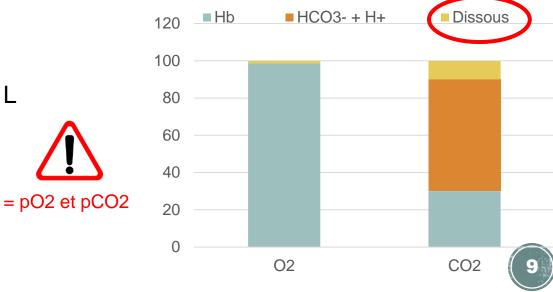
Physiologie

Air atmosphérique

- 21% d'O2 ← → 160 mmHg (21% de 760 mmHg = PA)
- 0,03% de CO2 ←→ 0,2 mmHg

Air alvéolaire


- 11-14% d'O2 ← → 80-100 mmHg
- 5,6% de CO2 ← → 39 mmHg

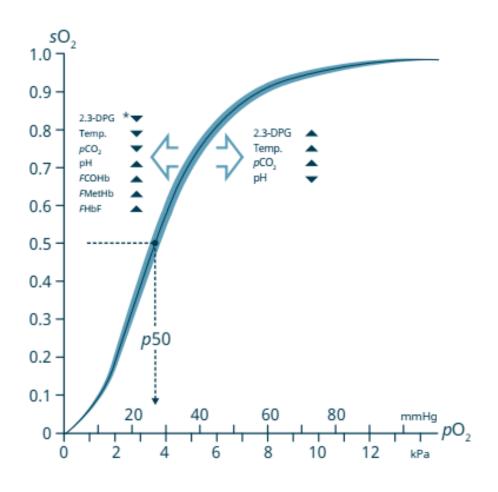

Oxygène au masque

- 1L d'O2 ← → 4% de FiO2 en + pour les 3 premiers L
- Puis 3% par L d'O2

Respirateurs

■ 1% de plus \leftarrow >7,6 mmHg de plus

Question

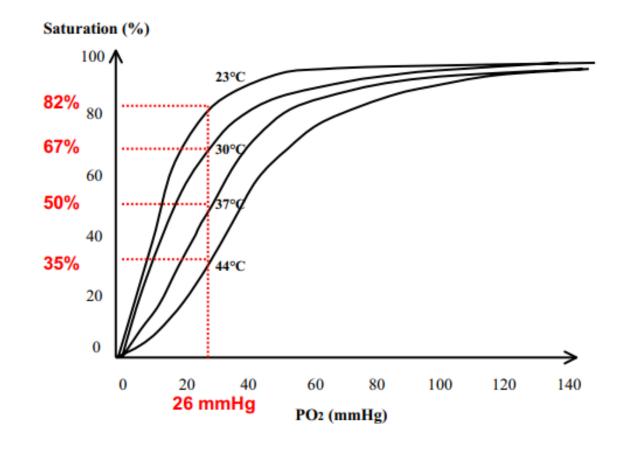

- Pourquoi la température, la FiO2 et le lieu de prélèvement sont indispensables à l'interprétation d'une gazométrie ?
 - Les paramètres sont recalculés par l'automate en fonction de la FiO2
 - Les paramètres sont recalculés par l'automate en fonction de la température
 - L'influence de la température est faible sur la PaCO2
 - Le lieu de prélèvement peut toujours être déduit des résultats

Réponse

- Pourquoi la température, la FiO2 et le lieu de prélèvement sont indispensables à l'interprétation d'une gazométrie ?
 - Les paramètres sont recalculés par l'automate en fonction de la FiO2
 - Les paramètres sont recalculés par l'automate en fonction de la température
 - L'influence de la température est faible sur la PaCO2
 - Le lieu de prélèvement peut toujours être déduit des résultats
 - La température influence l'affinité de l'oxygène pour l'hémoglobine

Physiologie Relation PaO2 – SaO2

- Relation PaO2 SaO2 non linéaire
- Modification de l'affinité pour l'O2 par:
 - Température
 - CO2
 - pH
 - Hb
 - 2,3-DPG
- P50
- Intérêt de la GDS et du contenu en O2 +++

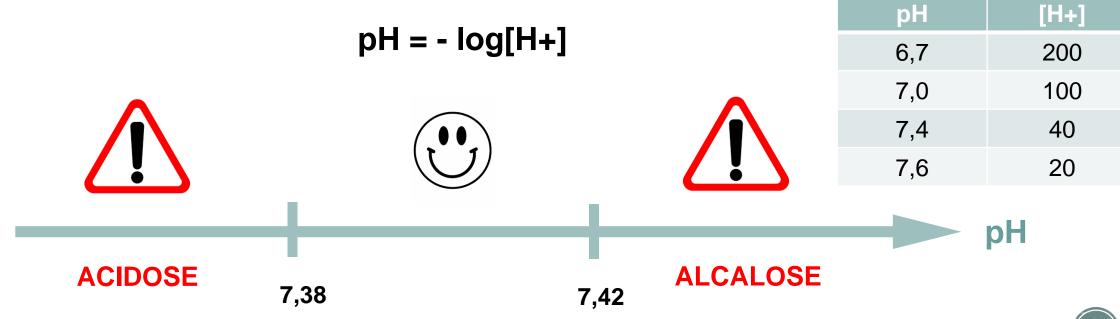


Courbe de dissociation de l'oxyhémoglobine

Physiologie Température

Influence sur :

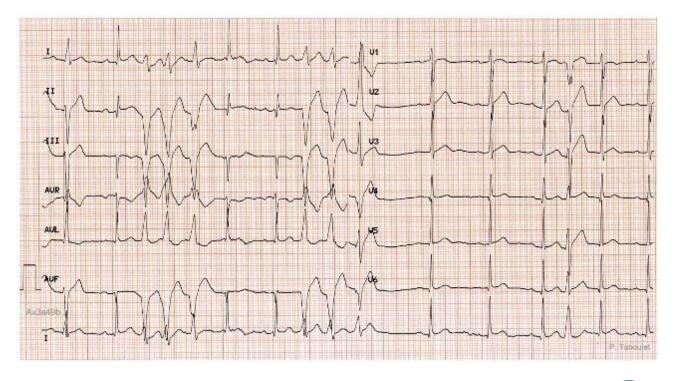
- La solubilité des gaz
- Le métabolisme cellulaire in vivo
- L'affinité de l'oxygène pour l'hémoglobine



Exemple:

	Patient à 37 °C	Patient à 34 °C	
	Résultats à 37 °C	Résultats à 37 °C sans correction	Résultats après correction pour 34 °C selon abaques
pH	7,40	7,43	7,46
PaCO ₂ (mmHg)	40	36	32

Equilibre acido-basique


- Homéostasie du pH
- pH (potentiel hydrogène) d'une solution: mesure de sa concentration en ions H*

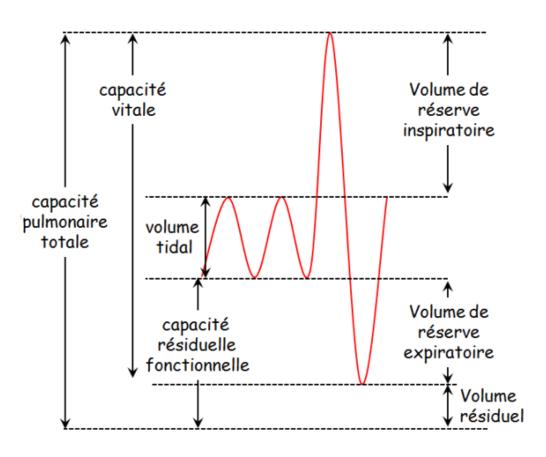
Pourquoi le pH doit-il être étroitement régulé?

- Activité enzymatique
- Excitabilité neuronale
- Concentration en potassium

- 1) Les systèmes tampons (Hb, protéines, phosphates, HCO3-,...)
- 2) La ventilation (75%)
- 3) La régulation rénale d'H+ et HCO3- (25%)

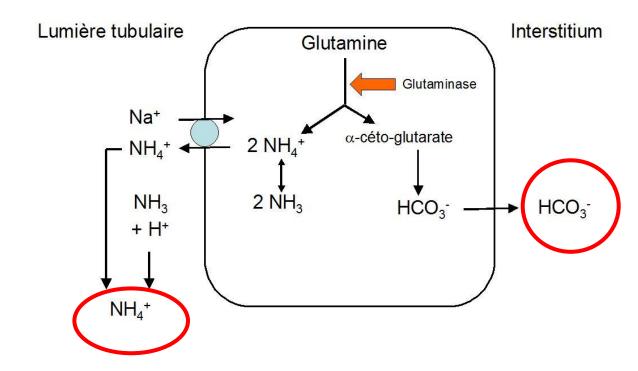
$$CO_2 + H_2O \longleftrightarrow H_2CO_3 \longleftrightarrow H^+ + HCO3^-$$

- 1) Les systèmes tampons (Hb, protéines, phosphates, HCO3-,...)
- 2) La ventilation (75%)
- 3) La régulation rénale d'H+ et HCO3- (25%)

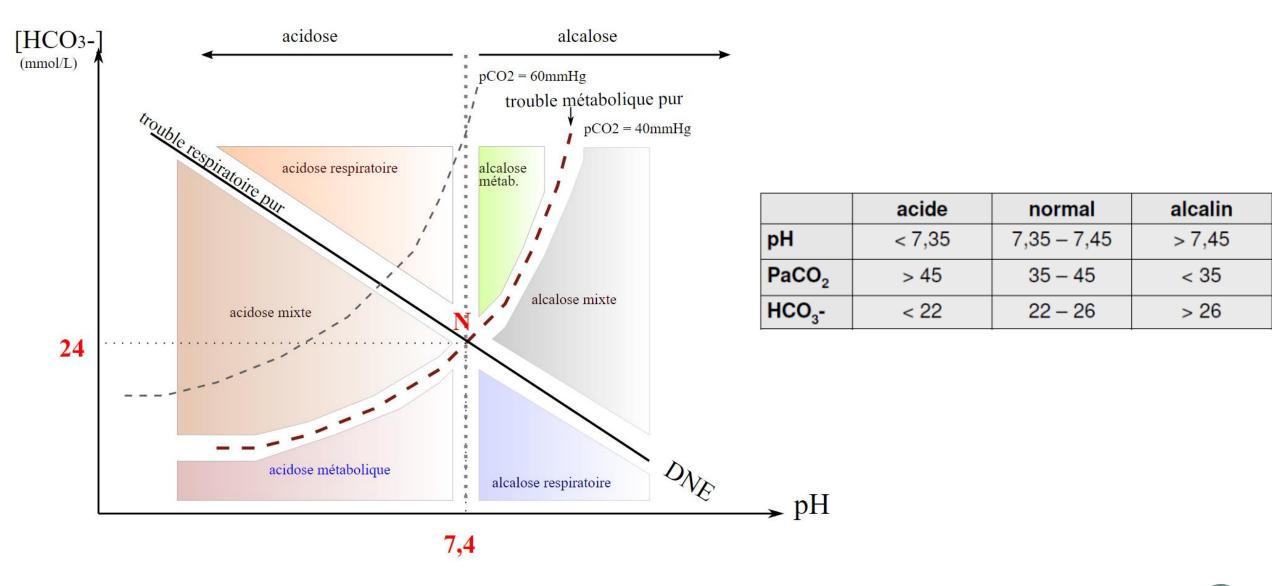


$$CO_2 + H_2O \longleftrightarrow H_2CO_3 \longleftrightarrow H^+ + HCO3^-$$

2) La ventilation (75%)


- Seul une partie de l'air inspiré participe aux échanges (65-80% physiologiquement)
- Régulation :
 - Rapide
 - Chimiorécepteurs centraux sensibles au CO2 (variation pH LCR)
 - Chimiorécepteurs périphériques sensibles aux variations O2 (à partir de 60 mmHg)
 - En cas de conflit : O2 prend le dessus

3) La régulation rénale d'H+ et HCO3- (25%)


- HCO3- totalement réabsorbés rein
- H+ excrétés via amoniogénèse rénale
- Elimination 80 mmol d'H+/J maximum (environ 20mmol/jour)
- Mise en place longue

Comprendre gazométrie artérielle

- Perturbations du pH sanguin caractérisées par leur cause primaire:
 - Respiration
 - Métabolique
- Compensée / non compensée
- Cas particuliers des maladies chroniques où les compensations vont permettre d'obtenir un pH normal.

Quelles questions se pose-t-on devant une gazométrie?

- Acidose / alcalose ?
- Cause respiratoire / métabolique ?

pH = 6,1 + log $\frac{[HCO_3-]}{PCO_2 \times 0.03}$

Compensation?

```
pCO<sub>2</sub> attendue = 1,5 [HCO<sub>3</sub>-] + 8 (+/- 2) (si acidose métabolique)

\DeltapCO<sub>2</sub> = 0,75 \DeltaHCO<sub>3</sub>- (si alcalose métabolique)
```

Trou anionique (ssi acidose métabolique) ?

Principe de l'électroneutralité : [anions] = [cations]

$$TA = ([Na^+] + [K^+]) - ([CI^-] + [HCO_3^-]) = 16 (+/-4)$$

Définitions et cas cliniques

- FiO2 = fraction inspirée en oxygène
- T = température en celsius
- IOT : intubation oro-trachéale
- Les paramètres non renseignés
 - Implicitement dans les valeurs normales
 - Ou non informatifs
- Pré-analytique correct
- Rouge = en dessous des VN
- Bleu = au dessus des VN

Cas clinique 1

- Patiente de 5 ans
- Asthénie, polyuro-polydypsie
- Vomissements
- Dyspnée

Paramètre	Patient	Valeurs normales
рН	7,11	7,35-7,45
pO2	125 mmHg	80-100 mmHg
pCO2	<10 mmHg	35-45 mmHg
Lactates	1,2 mM	< 2 mM
HCO3-	? mM	22-28 mM
Na+	136 mM	136-146 mM
K+	4,8 mM	3,4-4,5 mM
CI-	101 mM	98-106 mM

Question 1.1

- Comment interprétez vous ce gaz ?
 - Acidose
 - Alcalose
 - Métabolique
 - Respiratoire
 - Les bicarbonates sont en « ? » probablement car la seringue est QI

Réponse

- Comment interprétez vous ce gaz ?
 - Acidose
 - Alcalose
 - Métabolique
 - Respiratoire
 - Les bicarbonates sont en « ? » probablement car la seringue est QI

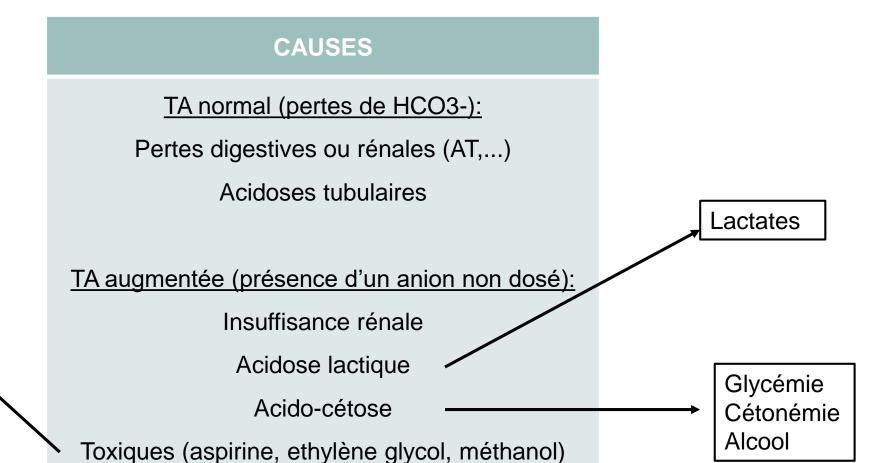
Analyse du cas et réponses

Paramètre	Patient	
рН	7,11	
pO2	125 mmHg	
pCO2	<10 mmHg	
Lactates	1,2 mM	
HCO3-	? mM	
Na+	136 mM	
K+	4,8 mM	
CI-	101 mM	

- 1ère étape : pH → acidose
- 2ème étape : pCO2/HCO3- → acidose métabolique
- 3^{ème} étape : pCO2 basse → compensation
- 4^{ème} étape : estimation HCO3- ≈ 3 (calcul avec pCO2 = 10 mmHg)
- 5^{ème} étape : Trou anionique > 36 → augmenté
- <u>Total</u>: acidose métabolique à trou anionique augmenté avec compensation respiratoire partielle

Question 1.2

- Quels sont selon vous les étiologies possibles ?
 - Diabète
 - Insuffisance respiratoire aigüe
 - Intoxication
 - Crise d'angoisse


Réponse

- Quels sont selon vous les étiologies possibles ?
 - Diabète
 - Insuffisance respiratoire aigüe
 - Intoxication
 - Crise d'angoisse

Acidose métabolique

 $CO_2 + H_2O \longleftrightarrow H_2CO_3 \longleftrightarrow H^+ + HCO3^-$

Etiologies

Salicylés Méthanol Ethylène glycol Phénytoïne Isoniazide

Acidose métabolique

 $CO_2 + H_2O \longleftrightarrow H_2CO_3 \longleftrightarrow H^+ + HCO3^-$

Etiologies

CAUSES

TA normal (pertes de HCO3-):

Pertes digestives ou rénales (AT,...)

Acidoses tubulaires

TA augmentée (présence d'un anion non dosé):

Insuffisance rénale

Acidose lactique

Acido-cétose

Toxiques (aspirine, ethylène glycol, méthanol)

Notre patiente :

Glycémie = 23 mM

(VN: 3,3-5,6)

seuil: 11 mM

CAS CLINIQUE 2

- Homme 64 ans
- ATCD: Pneumopathie interstitielle diffuse en cours d'exploration, BPCO
- Tableau de dyspnée croissante
- Oxygénorequérant à 12L/min
- IOT

Paramètres	Patient (sous 60%)	Valeurs normales
рН	7,47	7,35-7,45
PCO2	33,4	35-45 mmHg
PO2	48,2	80-100 mmHg
Bicarbonates	24,3	22-28 mM
Lactates	1,4	< 2 mM
Sodium	147	136-145
Potassium	3,3	3,4-4,5
Chlore	100	98-107

Questions 1

- Comment interprétez vous cette gazométrie?
- Alcalose respiratoire
- Il existe une compensation respiratoire responsable d'une hypoventilation alvéolaire
- Hypoxémie
- On peut considérer le patient en SDRA modérée

Analyse du gaz et réponses

Paramètres	Patient (sous 60%)
рН	7,47
PCO2	33,4
PO2	48,2
Bicarbonates	24,3
Lactates	1,4
Sodium	147
Potassium	3,3
Chlore	100

■ 1ère étape : pH → alcalose

• 2ème étape : pCO2/HCO3- → Alcalose respiratoire

 3^{ème} étape : HCO3- normaux → pas de compensation

 Total : alcalose respiratoire en lien avec la compensation de l'hypoxie

Alcalose respiratoire

Hyperventilation alvéolaire

CAUSES

Maladies respiratoires aigues ou chroniques

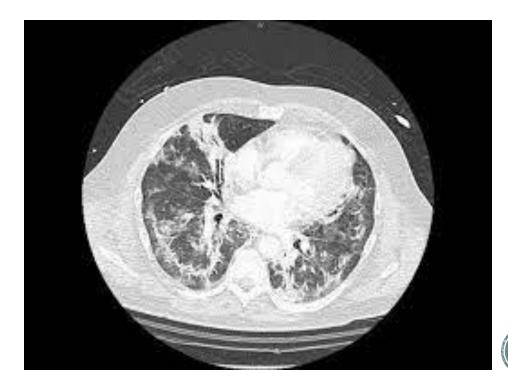
Anémie ou autre anomalies du transport de l'O2

Exposition à l'altitude

Hyperthermie

Anxiété

latrogène


$$CO_2 + H_2O \longrightarrow H_2CO_3 \longrightarrow H^+ + HCO3^-$$

SDRA (syndrome de détresse respiratoire aigue)

- Critères diagnostics (Force and al, 2012):
 - ➤ Insuffisance respiratoire aigue < 7 jours
 - > Opacités bilatérales visibles sur l'imagerie thoracique
 - > Absence d'OAP
 - > PaO2/FiO2 ≤ 300 mmHg

3 stades:

- ➤ Léger: PaO2/FiO2 entre 200 et 300 mmHg
- ➤ Modéré: PaO2/FiO2 entre 100 et 200 mmHg
- > Sévère: PaO2/FiO2 ≤ 100 mmHg

CAS CLINIQUE 3

- Femme 42 ans
- ATCD: Ganglionopathie sensitive d'étiologie indéterminée
- Tableau de dyspnée évoluant depuis 3 jours, sur pneumopathie infectieuse
- DRA et oxygénorequérant à 9L/min

Paramètres	Patient (sous 30%)	Valeurs normales
рН	7,36	7,35-7,45
PCO2	67	35-45 mmHg
PO2	64,9	80-100 mmHg
Bicarbonates	37,1	22-28 mM
Lactates	0,6	< 2 mM
Sodium	137	136-145
Potassium	4,3	3,4-4,5
Chlore	102	98-107

Question 3.1

- Comment interprétez-vous ce gaz?
- Acidose métabolique
- Acidose respiratoire
- Il existe une compensation rénale de ce trouble acido-basique
- Les bicarbonates sont anormalement élevés
- Elle doit probablement hypoventilée

Analyse du gaz et réponses

Paramètres	Patient (sous 30%)
рН	7,36
PCO2	67
PO2	64,9
Bicarbonates	37,1
Lactates	0,6
Sodium	137
Potassium	4,3
Chlore	102

- 1ère étape : pH → normal
- 2ème étape : pCO2/HCO3- → Composante respiratoire
- 3^{ème} étape : HCO3- élevé -> compensation rénale chronique
- <u>Total</u>: acidose respiratoire COMPENSEE

Question

- Brutalement, la patiente devient somnolente
- On l'intube pour protéger ces voies aériennes
- Vous refaites la gazométrie artérielle que voici

Paramètres	Patient (sous 30%)	Valeurs normales
рН	6,95	7,35-7,45
PCO2	120	35-45 mmHg
PO2	154	80-100 mmHg
Bicarbonates	25	22-28 mM
Lactates	NA	< 2 mM
Sodium	NA	136-145
Potassium	NA	3,4-4,5
Chlore	NA	98-107

Question 3.2

- Que pouvez-vous déduire de cette gazométrie?
- Il s'agit d'une acidose métabolique non compensée
- Il s'agit d'une acidose respiratoire non compensée
- Il faudrait diminuer le volume minute = FR x Vt
- Il faudrait augmenter le volume minute

Analyse du gaz et réponses

Paramètres	Patient (sous 30%)
рН	6,95
PCO2	120
PO2	154
Bicarbonates	25
Lactates	NA
Sodium	NA
Potassium	NA
Chlore	NA

■ 1^{ère} étape : pH → acidose

• 2^{ème} étape : pCO2/HCO3- → respiratoire

 3^{ème} étape : HCO3- élevé -> pas de compensation

Total: acidose respiratoire NON COMPENSEE

Solution respirateur: hyperventilation

Acidose respiratoire

Hypoventilation alvéolaire

CAUSES

Dépression respiratoire

Troubles ventilatoires obstructifs

Réduction de la capacité pulmonaire

Maladies neuromusculaires

Syndrome obésité-hypoventilation

$$CO_2 + H_2O \longrightarrow H_2CO_3 \longrightarrow H^+ + HCO3^-$$

Cas clinique 4

Pas de contexte clinique : biologie délocalisée. Patient de 57 ans.

Paramètre	Patient	Valeurs normales
рН	7,25	7,35-7,45
pO2	76,8 mmHg	80-100 mmHg
pCO2	29 mmHg	35-45 mmHg
Lactates	6,2 mM	< 2 mM
HCO3-	13,6 mM	22-28 mM
Na+	134 mM	136-145 mM
K+	4,4 mM	3,4-4,5 mM
CI-	95 mM	98-107 mM
TA	30	8-16

Reste du bilan biologique : Glycémie 1,3 g/L Alcoolémie, fonction rénale normaux

Question 4

- Quel est votre avis ?
 - Acidose lactique
 - Acido-cétose diabétique
 - Jeun prolongé
 - Intoxication

Réponse

- Quel est votre avis ?
 - Acidose lactique
 - Acido-cétose diabétique
 - Jeun prolongé
 - Intoxication

Analyse du gaz et réponses

Paramètre	Patient
рН	7,25
pO2	76,8 mmHg
pCO2	29 mmHg
Lactates	6,2 mM
HCO3-	13,6 mM
Na+	134 mM
K+	4,4 mM
CI-	95 mM
TA	30

■ 1^{ère} étape : pH → acidose

• 2ème étape : pCO2/HCO3- → acidose métabolique

• 3^{ème} étape : pCO2 basse → compensation

• 4ème étape : Trou anionique = 30 → augmenté

 <u>Total</u>: acidose métabolique à trou anionique augmenté avec compensation respiratoire partielle

$HCO_3^- < 22 \text{ mmol} \cdot L^-$

pH sur gazométrie artérielle < 7,38

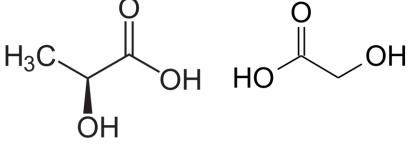
(différencier d'une alcalose respiratoire)

Trou anionique corrigé

 $TAc = Na^{+} - (Cl^{-} + HCO3^{-}) + 0.25 \times (40 - Alb^{-})$

Trou anionique augmenté

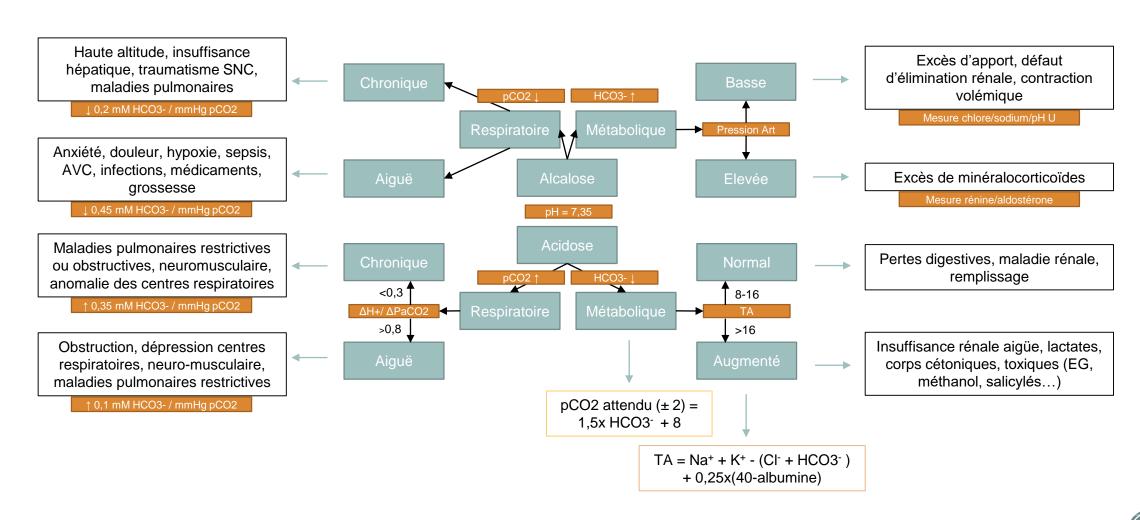
- Insuffisance rénale aiguë
- Acidose lactique
- Corps cétoniques
- Autres acides indosés (acide acétylsalicilique, éthylène glycol, méthanol...)


Trou anionique normal

- Pertes digestives
- Acidose tubulaire proximale / acétazolamide
- Acidose tubulaire distale
- Remplissage abondant en solutés riches en chlore, apports chlorés importants

(Le trou anionique urinaire a une validité faible en réanimation)

ATTENTION PIEGES


- Une hyperglycémie possible dans les intoxications
 - Le contexte (patient diabétique, âge), gravité de l'acidose métabolique, glycémie
- Acidose lactique ?
 - Non: 6,2 mM ≠ 18 (trou anionique 30-12)
- Toxique ?
 - Rajout possible du trou osmolaire
 - Ethylène-glycol = 1,7 g/L
- Interférences de mesure sur le lactate
 - acide glycolique et glycoxalique (métabolites)
 - Si lactate oxydase (ABL 800) → fausse hyperlactatémie
 - Automate de biochimie (lactate déshydrogénase) → lactates normaux

Bibliographie

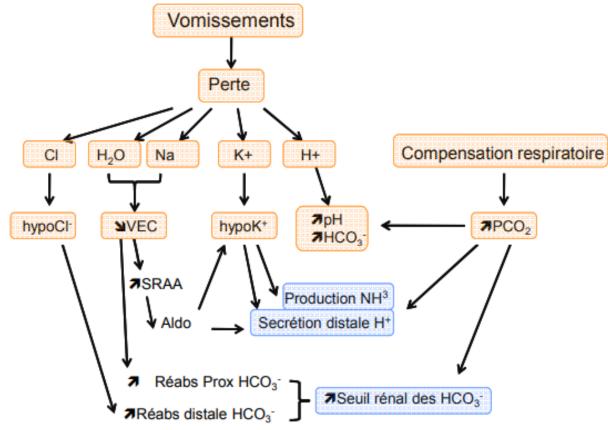
- J.-F. Mollard. Précautions préanalytiques et matériel de prélèvement pour l'analyse des gaz du sang. ABC. 2000
- SRLF, SFMU. Diagnosis and management of metabolic acidosis: guidelines from a French expert panel. Ann Intensive Care. 2019 Aug 15;9(1):92.
- Tremey B, Vigué B. Changes in blood gases with temperature: implications for clinical practice. Ann Fr Anesth Reanim. 2004 May;23(5):474-81.
- P. Sood et al. Interprétation of arterial blood gas. IJCCM. 2010 June;14(2).

Schéma récapitulatif

Cas clinique B1

- Patient 53 ans
- Vomissements +++
- PA imprenable
- IRA

Paramètre	Patient	Valeurs normales
рН	>7,8	7,35-7,45
pO2	79,4 mmHg	80-100 mmHg
pCO2	25,3 mmHg	35-45 mmHg
Lactates	12,6 mM	< 2 mM
HCO3-	? mM	22-28 mM
Na+	134 mM	136-145 mM
K+	2,5 mM	3,4-4,5 mM
CI-	53 mM	98-107 mM


Analyse du gaz et réponses

Paramètre	Patient
рН	>7,8
pO2	79,4 mmHg
pCO2	25,3 mmHg
Lactates	12,6 mM
HCO3-	? mM
Na+	134 mM
K+	2,5 mM
CI-	53 mM

- 1ère étape : pH → alcalose
- 2^{ème} étape : pCO2/HCO3- → alcalose métabolique et respiratoire
- 3^{ème} étape : Cl- : hypochlorémie marquée
- Total: alcalose mixte hypochlorémique
- Compensation respiratoire attendue = 0,7/mmol d'HCO3- en moins
- En cas de conflit, l'O2 prend le dessus

Notre patient

- Déshydratation sévère, pancréatite aigüe
- Entretien de l'alcalose métabolique
 - Déplétion volémique
 - Hypochlorémie
 - Hypokaliémie
- Traitement
 - Réhydratation
 - Traitement de la cause

Alcalose métabolique

Perte des H+

CAUSES

Pertes digestives

Pertes rénales

Alcalose de contraction

$$CO_2 + H_2O \longleftrightarrow H_2CO_3 \longleftrightarrow H^+ + HCO3^-$$

Cas clinique B2

- Patient de 84 ans, retrouvé Glasgow 3, pupilles en myosis aréactives
- Abolition des réflexes du tronc, hémodynamique conservée
- IOT, FiO2 : 100%, T=36°C

Paramètre	Patient 13h45	Patient 14h00	Valeurs normales
рН	7,43	7,21	7,35-7,45
pO2	341 mmHg	399 mmHg	80-100 mmHg
pCO2	34 mmHg	60,5 mmHg	35-45 mmHg
HCO3-	22 mmHg	23,8 mmHg	22-28 mmHg
Lactates	1,2 mM	1,0 mM	< 2 mM

Question Bonus

- Selon vous :
- La pO2 est incohérente, je me pose la question d'une bulle d'air
- La pCO2 est incohérente entre les 2 résultats, j'appelle le service pour savoir lequel est bon et supprime l'autre résultat
- Je suis surpris par l'absence de variation significative des bicarbonates
- Une variation de 30 mmHg dans la pCO2 est possible en 15 minutes dans des cas particuliers

Question

- Selon vous :
- La pO2 est incohérente, je me pose la question d'une bulle d'air
- La pCO2 est incohérente entre les 2 résultats, j'appelle le service pour savoir lequel est bon et supprime l'autre résultat
- Je suis surpris par l'absence de variation significative des bicarbonates
- Une variation de 30 mmHg dans la pCO2 est possible en 15 minutes dans des cas particuliers

Epreuve d'hypercapnie

- Vérifier l'absence de ventilation spontanée contexte mort encéphalique
 - Patients ventilés
 - 10-15 minutes
 - Sonde à oxygène
 - Maintien pO2 correcte
 - Préserve les organes
- Si
 - Absence de mouvements respiratoires/abdominaux + pCO2 > 60 mmHg
 - → Absence de ventilation spontanée